

Ivan J. Baiges Valentin Professor, Father, Friend and Husband

slide 1

introduction

- 1. What are we going to do and why?
- 2. Getting Organized organizational commitment
- 3. The development process
- 4. Understanding the user needs *voice of the customer*
- 5. Parametric Analysis
- 6. Quality Function Deployment
- 7. Product Design Specifications

slide 2

Why Design?

- To solve an existing problem "this package breaks during transportation and it ... "
- To improve an existing solution " we want to increase the fuel efficiency by 20% for the next year models..."
- To take advantage of an opportunity "most people have internet but do not have time to run errands..."

slide 5

```
Ø
```


slide 6

The Rule of 10				
	Level of completion	Cost to find & repair defect		
	the part itself	Х		
	at sub-assembly	10x		
	Final assembly	100x		
	At the dealer / distributor	1000x		
	At the customer	10000x		
de 10		(Fri	jr	

sli

Getting Started

slido 13

- You have the situation
- · You define scope, goals and objectives
- You may define your schedule, resources needed
- · You may identify the risks

slide 13

· You must do some planning

PROJECT ROADMAP

Yuri Gagarin in the bus to a launch pad just before his historic fligh on April 12, 1961.

John F. Kennedy issued his famous challenge in May 1961

slide 17

"I believe this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the moon and returning him safely to Earth "

TT

slide 17

	Luna	r Program Project			
	Scope	Land a man on the moon and return			
	Time	Before Dec 31, 1969			
	Performance	Go to the moon and return safely			
	cost	\$100 billion			
slic	slide 19 slide 19				

Project Planning Example

Request

slide 20

Final Product Sterilizer – develop a new system that can package and sterilize the final product in **50% of the actual time** and with **20% increase in quality**

clido 20

î.

Example of project planning *actual situation*

ACME TUNA CORP is interested in remaining competitive in the market of processing frozen fish loins (thawing, canning, cooking and packaging)

✓ The existing thawing system has
 ☑ Significant material handling costs

☑ Long thawing times

Project Requirements

requirement	justification	specification
Labor	The company wants to reduce operational cost	Reduction + 10% of costs per pound
Space	There is no more space available	Use of to 90% of existing space
Handling times and distances	There is too much time due to transportation and handling – non value added	Reduce handling times by 40% Reduce transportation load by 50%
Thawing times	Thawing takes too much time, process can be changed	Reduce thawing time by 50%

Project Executive Summary example – tuna processing plant

- Issue Statement

The operational costs are increasing every year, at this rate the site will be cease to be competitive by 2009

Project Objective Statement (POS)

Develop a thawing system to reduce operational costs by 50% by 2008

slide 28

slide 28

Ð

T

slide 29

Project Executive Summary example – tuna processing plant

Major Deliverables –

- ✓ Proven design for a thawing system
- ✓ Proven design for a fish handling system
- ✓ Design and validation data for both systems
- Work Standards and Operating Procedures for both systems.

slide 30

Metrics and targets

- ✓ % of reduction of labor costs, 50%
- ✓ % of reduction in utility costs, 50%

```
slide 29
```

slide 30

Th

Project Executive Summary

- Milestones significant events on a project
- Estimated Costs and Resources

 List of cost of the project and what resources are needed for completion

clido 32

Project Executive Summary					
milestone	definition	duration			
Project Definition	clearly define the goals, requirements, restrictions and project schedule	3 weeks			
Development of Thawing System	develop a better system for thawing the frozen fish.	6 weeks			
Development of the System Layout	change the existing system layout to make it more efficient.	4 weeks			
Validate System	make sure the system will work as designed	6 weeks			
slide 33 slide 33					

Project Planning Exercise – 10 minutes **Project Planning Exercise** □Request • Let us divide the class in Final Product Sterilizer groups of 4 persons develop a new system that each can package and sterilize Prepare a 1 page the final product in 50% of project plan to get the the actual time and with project completed by 20% increase in quality March 1st, 2009 slide 37 slido 37 slide 38 slide 38

1 - Identify Customer Needs

- · Products and services are designed to satisfy the needs of the customers
- Knowing and understanding the voice of the customer is very important
- · The main challenge is that the customer may not know how to describe what is wanted
- The outcome of this step is a list of customer requirements

slide 43

1 - Identify Customer Needs

Identify The WHAT ?

- Activities
 - Write Problem Statement
 - ✓ Interact with Technical Marketing and/or sales groups to obtain a list of customer needs
 - Customer analysis (dissatisfied customers)
- Deliverables
 - Customer Needs List or Product Design Specifications

slide 44

- 1 Identify Customer Needs
- · Most information related to the customer needs must be evaluated and analyzed to obtain useful trends and other information

slide 45

- · Possible Methods
- a. Affinity Diagrams
- b. Parametric Analysis
- c. Quality Function Deployment

slide 45

Additional Sources of Information

- ✓ Thomas Register
- ✓ Market Share Reporter
- National Bureau of
- Standards ✓ Census of
- Manufactures ✓ Moody's Industry
- Review
- **Consumer Reports** Magazine

slide 47

- ✓ Trade Magazines
- ✓ Market Research Databases
- ✓ Web

- ✓ Vendors
- ✓ Technical Specialists
- ✓ Experts/Friends in Industry

Parametric Analysis – example

	Honda Accord	Toyota Camry	Nissan Altima	Hyundai Sonata	Ford Fusion	BMW 328
Curb Weight	3230	3263	3145	3253	3101	3362
Wheelbase (in.)	110.2	109.3	109.3	107.4	107.4	108.7
Length (in.)	194.1	189.2	189.8	188.9	189.2	188.9
Width (in.)	72.7	71.7	70.7	72.1	71.7	72.1
Height (in.)	58.1	57.9	57.9	58	57.9	58
Passenger Vol (cu. ft.	106	101.4	100.7	105.4	101.4	105.4
Cargo Vol(cu. ft.)	14	15	15.3	16.3	15	16.3
Headroom - front	41.4	38.8	40.6	40.1	38.8	40.1
Headroom 2nd row	38.5	37.8	36.8	38.2	37.8	38.2
Legroom front	42.5	41.7	44.1	43.7	41.7	43.7
Legroom 2nd row	37.2	38.3	35.8	37.4	38.3	37.4
Shoulder Room front	58.2	57.8	55.7	57.4	57.8	57.4
mpg(City)	22	21	23	21	20	18
mpg (Highway)	31	31	32	32	29	28
Horsepower	177	175	158	175	160	230
Torque	161	168	161	180	156	200

You gather some specifications of these cars

Quality Function Deployment

- The *product's quality* can be defined as how well it meets the expectations of the users
- **QFD** translates user requirements into Design Specifications that can be used to develop the product or solution
- Prioritize Design Features
- Evaluates the Competition
- Develops the House of Quality

slide 62

QFD Key Points

- Use <u>customer input</u> (not engineering specification) to define what is important
- Focus on important items (not everything)
- Determine <u>targets</u> for important items limit variations around target

The QFD Process

- 1. Identify the Customer(s)
- 2. Determine Customer Requirements/Constraints
- 3. Prioritize each requirement
- 4. Competitive Benchmarking
- 5. Translate Customer Requirements into Measurable Engineering specifications
- 6. Set Target values for each Engineering Specification

slide 66

QFD Steps

- 1. Establish the Objective
- Listen to customers, document the Voice of the Customer. Develop a list of customer requirements and establish weighting factors for each – this is a list of WHAT the customer wants
- 3. Develop a list of *technical requirements* this is list of **HOWs** the customer *wants* will be satisfied
- 4. Determine the relationships between the **technical** requirements and the customer requirements

slide 66

slide 65

î

QFD Example An Automobile Bumper

Step 2: Determine Voice of the Customer & Customer Requirements

- ✓ I want something that looks nice (basic)
- ✓ It must hold my license plate (performance)
- ✓ I want it strong enough not to dent (excitement)
- ✓ It must protect my tail-lights and head-lights (performance)
- I don't want to pay too much (basic)

Voice of the customer to customer requirement Step 2: Determine Voice of the Customer & Customer Requirements looks good holds license plate resists dents protects lights does not rust lasts a long time inexpensive protects the car body

Product Design Specification

- The PDS provides a long list of categories of requirements
- The customer requirements are translated into these requirements along with a proposed target value

Product Design Specification

specification	explanation	example
1. Performance	this spec covers how well the product works	this car goes from 0 to 60 mph in 10 seconds
2. Environment	this spec refers to the operational environment that the product will encounter	The product must operate at 200 degrees and 95% rh
slide 92	slide 92	

PDS - life in service, shelf life, life span

- · This specification the life of the product
 - Life in service describes how long it should last during operation
 - Shelf life describes how long it can last before it starts being used
 - Life span this describes the expected life of the product in the market place (in terms of technology)

slide 95

slide 95

PDS - size, weight

slide 97

slide 99

slide 101

- These describe how well physical dimensions of the product
 - Weight the product may not weigh more than X pounds
 - $-\operatorname{Size}\,$ the product must have a maximum height of ${\bf Y}$ feet

PDS – packaging, shipping, installation

- These describe how the product will go from the production facility to that actual point of use
- Packaging this product can be packaged with a simple cardboard box
- Shipping this product will be sent by air mail

R

• Installation – this product can be assembled by the user

clido 08

PDS – manufacturing, materials

- These describe all the steps to create a final product ready to be shipped
- Materials this product will be in a salt water environment so it has to be corrosion resistant
- *Manufacturing* the volume of productions allows us to use injection molding tools.

slide 99

PDS – legal, social, political issues

- These describe other requirements that impact the product
- Legal this product is a medical device
- Social this product will allow low income families to have easier access to the internet
- **Political** -This product allows farmers to increase their production and not depend on government funding

slide 100

slide 100

slide 98

PDS - example
 High Speed Point of Sale
 "Design a cost effective high speed inkjet printer for printing receipts, capable of outperforming any of the existing receipt printing systems now in the marketplace"

F	PDS for HS	POS (partial list)			
	Requirement	Motivation	Target		
	Size	 The new printer system is targeted to compete with present systems. We want these printers to be smaller than existing printer since the space on sales counters in a precious commodity 			
sli	slide 103				

PDS for HS POS (partial list)

Motivation	Target
 We want these printers to be lighter than the existing systems so that it is very easy to move it very quickly from one counter to another. Make it so that one person can carry it without suffering any injuries 	
	 to be lighter than the existing systems so that it is very easy to move it very quickly from one counter to another. Make it so that one person can carry it without suffering any

PDS for HS	POS (partial list)	
Requirement	Motivation	Target
Shinning	 We want to be able to ship these printers even by air mail in case we have to replace one very quickly. 	
Shipping	 So the unit and the required packaging should still satisfy the requirements for Next Day Service 	
ide 105		mjr

Requirement	Motivation	Target
Disposal	The system will be design so that it can be taken apart very easily. Neither the printer nor the supplies can have any toxic materials	 ✓ Disassembly time <= 2 hours ✓ NO TOXICS, ✓ Use recycled materials ✓ Follow EU disposal standards

PDS for HS	POS (partial list)		
Requirement	Motivation	Target	
Company Constraints	 We want this new product to be aligned with SUPER DUPER Jet 1000 We want to beat direct thermal printers 	♦Cost of Printer less than 75% of direct thermal	
slide 107			

MINE DETECTOR - PDS

- Functional Performance: The autonomous mine detector is designed to sweep a 20' x 20' terrain with the capability of detecting up to four land mines.
- Requirement: Time — Complete sweep of area in 10 minutes
- Requirement: Budget constrained
 \$400 of reimbursed capital
 - \$100 of out of the pocket capital

slide 109

MINE DETECTOR - PDS

- Requirement: Must be back-portable
 - Fit in 2' x 2' x 2' box
 - Weigh less than 50 lbs
- Requirement: Does not detonate mine
- Sniffer at least 9" above center of mine
- Parts of vehicle that touch ground at least 9" radius from center of mine

slide 110

- Requirement: Undetectable by enemy
 - Cannot be radio controlled
 - Cannot be wire controlled
- · Requirement: Sufficiently powered for one sweep
 - Battery powered (Type to be decided)
 - Battery life of 10 or more minutes
- Requirement: Safe for use
 - Designed for operator of 18 years or older

slide 111

MINE DETECTOR - PDS Requirement: Operates in various climates

- Functions in temperatures ranging from -10°F to 120°F
- Functions in precipitation (handles daily maximum rainfall recorded in South Bend)
- System functions in a maximum of 3" of snow/water

slide 112

The importance of the PDS

- A Product Design Specification (PDS) is a structured description of the purpose, functions, characteristics and other kinds of information that describe the design problem.
- Developing a proper PDS is the essential initial step in any design process.

The importance of the PDS

- A good PDS is especially important when designing in teams, because it's vital that the whole team solve the *same* problem.
- Sometimes, different team members will be working on slightly different problems without knowing it.
- Each will end up with slightly different solutions slightly different designs - that will be incompatible.
- These kinds of problems can be quite small but can lead to huge losses in efficiency and product quality.

Session's Goals & Objectives

- Goal Present the design / development process
- Objectives
- a. Teach the fundamentals of the development process
- b. Make sure participants can organize a project
- c. Make sure participants can evaluate the project needs
- d. Make sure that the participants can define the project requirements and deployment plan

slide 115

